City Well ID No	$11-$ chloroeic osafluoro $3-$ oxaundec ane-1- sulfonic acid ack (11ch PF3OUS)	$\begin{aligned} & 1 \mathrm{H}, 1 \mathrm{H}, \\ & 2 H, 2 \mathrm{H} \\ & \text { perfluor } \\ & \text { pecane } \\ & \text { decalo } \\ & \text { sulfoid } \\ & \text { faid } \\ & \text { (8:2FTS) } \end{aligned}$	$1 \mathrm{H}, 1 \mathrm{H}$, $2 \mathrm{H}, 2 \mathrm{H}$ hexane sulfonic acid (4:2FTS)	$1 \mathrm{H}, 1 \mathrm{H}$, $2 \mathrm{H}, 2 \mathrm{H}$ octane sulfonic acid (6:2FTS)	$\left\|\begin{array}{c} 4,8 \text {-dioxa- } \\ \text { 3H- } \\ \text { perfluoro } \\ \text { nonanaic } \\ \text { acid } \\ \text { (ADONA) } \end{array}\right\|$	9- chlorohexad ecafluor--3- oxanonane- 1 -sulfonic acid (9cl- PF3ONS)	$\begin{gathered} \text { hexafluor } \\ \text { opropyle } \\ \text { ne oxide } \\ \text { dimer } \\ \text { acid } \\ \text { (HFPO- } \\ \text { DA) } \\ \text { (GenX) } \end{gathered}$	$\left\|\begin{array}{c} \text { nonafluor } \\ \text { o-3,6- } \\ \text { dioxahep } \\ \text { tanoic } \\ \text { acid } \\ \text { (NFDHA) } \end{array}\right\|$	perfluoro (2- ethoxyet hane) sulfonic acid (PFEESA)	perfluoro $3-$ methoxy propanoi cacid (PFMPA)	perfluoro 4- methoxy butanoic acid (PFMBA)	$\left\|\begin{array}{c} \text { perfluoro } \\ \text { butanesul } \\ \text { fonic acid } \\ \text { (PFBS) } \end{array}\right\|$	$\begin{gathered} \text { perfluoro } \\ \text { butanoic } \\ \text { acid } \\ \text { (PFBA) } \end{gathered}$	$\begin{gathered} \text { perfluoro } \\ \text { decanoic } \\ \text { acid } \\ \text { (PFDA) } \end{gathered}$	$\begin{gathered} \text { perfluoro } \\ \text { dodecano } \\ \text { ic acid } \\ \text { (PFDoA) } \end{gathered}$	perfluoro heptanes ulfonic acid (PFHpS)	$\begin{gathered} \text { perfluoro } \\ \text { heptanoi } \\ \text { cacid } \\ (\text { PFHPA }) \end{gathered}$	perfluoro hexanesu Ifonic acid (PFHxS)	$\begin{gathered} \text { perfluoro } \\ \text { hexanoic } \\ \text { acid } \\ (\mathrm{PFH} \mathrm{AH}) \end{gathered}$	$\left\|\begin{array}{c} \text { perfluoro } \\ \text { nonanoic } \\ \text { acid } \\ \text { (PFNA) } \end{array}\right\|$	$\left\|\begin{array}{c} \text { perfluoro } \\ \text { octanesul } \\ \text { fonic acid } \\ \text { (PFOS) } \end{array}\right\|$	$\begin{array}{\|c} \text { perfluoro } \\ \text { octanoic } \\ \text { acid } \\ \text { (PFOA) } \end{array}$	perfluoro pentanes ulfonic acid (PFPeS)	$\left\|\begin{array}{c} \text { perfluoro } \\ \text { pentanoi } \\ \text { cacid } \\ \text { (PFPeA) } \end{array}\right\|$	$\left.\begin{array}{\|c} \text { perfluoro } \\ \text { undecano } \\ \text { ic acid } \\ \text { (PFUnA) } \end{array} \right\rvert\,$	N-ethyl perfluoro octanesul fonamido actic acid (NEtFOSA A)	N-methyl perfluoroo ctanesulfo namidoace tic acid (NMeFOSA A)	$\left.\begin{array}{\|c} \text { perfluoro } \\ \text { tetradeca } \\ \text { noic acid } \\ \text { (PFTA) } \end{array} \right\rvert\,$	$\begin{array}{\|l\|l} \\ \hline \text { perfluoro } \\ \text { tridecano } \\ \text { ic cacid } \\ \text { (PFTrDA) } \end{array}$	lithium
MRL ($\mu \mathrm{g} \mathrm{L}$)	0.005	0.005	0.003	0.005	0.003	0.002	0.005	0.02	0.003	0.004	0.03	0.003	0.005	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.003	0.002	0.005	0.006	0.008	0.00	9
CW2/CW4	<MRL	<MRL	< MRL	<MRL	<MRL	< MRL	< MRL	<MRL	<MRL	< MRL	< MRL	< MRL	< MRL	<MRL	<MRL	<MRL	<MRL	< MRL	< MRL	< MRL	<MRL	< MRL	<MRL	< MRL	< MRL	<MRL	<MRL	<MRL	<MRL	<MRL
Cw03	< MRL	<MRL	< MRL	< MRL	<MRL	< MRL	<MRL	<MRL	<MRL	< MRL	< MR																			
Cw05	< MRL	<MRL	<MRL	< MRL	<MRL	<MRL	<MRL	<MRL	<MRL	<MRL	< MRL	< MRL	<MRL	MRL	< MRL	<MR														
CW06	< MRL	<MRL	< MRL	< MRL	<MRL	< MRL	< MRL	< MRL	< MRL	<MRL	< MRL	< MRL	< MRL	< MRL	<MRL	<MRL	< MRL	<MRL	< MRL	<MRL	<MRL	< MR								
CW07	< MRL	<MRL	<MRL	<MRL	< MRL	<MRL	<MRL	< MRL	<MRL	< MRL	<MRL	<MRL	<MRL																	
CW08	< MRL	<MRL	< MRL	< MRL	<MRL																									
Cw09	<MRL																													
CW10	< MRL	<MRL	<MRL	<MRL	<MRL	< MRL	< MRL	<MRL	<MR																					
CW11	<MRL																													
CW12	<MRL																													
CW13	<MRL																													
CW15	< MRL	<MRL	<MRL	<MRL	<MRL	< MRL	<MRL	<MRL	< MRL	<MRL	<MRL	< MRL	< MRL	<MRL	< MRL	< MRL	< MRL	< MRL	<MRL	<MRL	<MRL	<MRL	<MRL							
CW16	<MRL	< MRL	<MRL	<MRL	<MRL	<MRL	<MRL																							
CW17	< MRL	<MRL	<MRL	<MRL	<MRL	<MRL	< MRL	<MRL	< MRL	<MRL	<MRL	<MRL	<MRL	<MRL																
CW18	<MRL	< MRL	< MRL	< MRL	< MRL	<MRL																								
CW21	<MRL	< MRL	< MRL	< MRL	<MRL	< MRL	<MRL	<MRL	<MRL	<MRL	<MRL	< MRL	<MRL																	
CW22	< MRL	<MRL	<MRL	<MRL	<MRL	< MRL	< MRL	<MRL	< MRL	<MRL																				
CW23	<MRL	< MRL	< MRL	<MRL																										
CW25	<MRL	< MRL	<MRL	< MRL	<MRL	< MRL	< MRL	<MRL	<MRL	<MRL	<MRL	<MRL																		
CW27	<MRL	< MRL	< MRL	<MRL	< MRL	< MRL	< MRL	< MRL	<MRL																					
CW28	<MRL	<MRL	<MRL	<MRL	<MRL	< MRL	<MRL	<MRL	<MRL	<MRL	<MRL	< MRL	< MRL	<MRL																
CW29	<MRL																													
CW32	<MRL																													
CW33	<MRL	<MRL	< MRL	<MRL	< MRL	<MRL	0.0035	<MRL	<MRL	0.0074	<MRL	<MRL	< MRL	<MRL	<MRL	<MRL	<MRL	< MRL	<MRL											
CW35	<MRL	<MRL	< MRL	<MRL	< MRL	<MRL	< MRL	<MRL	< MRL	< MRL	< MRL	< MRL	<MRL	<MRL	<MRL	<MRL	< MRL													

MRL - Minimum Reporting Level, microgram/liter ($\mu \mathrm{g} / \mathrm{L}$)

